Search results for "Timoshenko beam theory"
showing 10 items of 19 documents
Analysis of non-uniform torsion in curved incrementally launched bridges
2014
Abstract Incremental launching is a common and convenient methodology to build continuous girder bridges on several piers. Although it has mainly been applied to straight bridges with box sections, today it is also used for construction of horizontally curved bridges with concrete and composite steel–concrete closed or open sections like I-girders. In these cases the contribution of torsion to the stress state becomes of primary importance when the construction stages of these bridges are analysed. Moreover, the presence of thin-walled cross-sections, makes the analysis of non-uniform torsion fundamental when the angle of twist per unit length is not constant or warping is prevented in thos…
From the Euler–Bernoulli beam to the Timoshenko one through a sequence of Reddy-type shear deformable beam models of increasing order
2015
Abstract A sequence of elastic Reddy-type shear deformable beams of increasing (odd) order is envisioned, which starts with the Euler–Bernoulli beam (first order) and terminates with the Timoshenko beam (infinite order). The kinematics of the generic beam, including the warping mode of the cross sections, is specified in terms of three deformation variables (two curvatures, one shear angle), work-conjugate of as many stress resultants (two bending moments, one shear force). The principle of virtual power is used to determine the (static) equilibrium equations and the boundary conditions. The equations relating the bending moments and shear force to the curvatures and shear angle are also re…
Non-local stiffness and damping models for shear-deformable beams
2013
This paper presents the dynamics of a non-local Timoshenko beam. The key assumption involves modeling non-local effects as long-range volume forces and moments mutually exerted by non-adjacent beam segments, that contribute to the equilibrium of any beam segment along with the classical local stress resultants. Elastic and viscous long-range volume forces/moments are endowed in the model. They are built as linearly depending on the product of the volumes of the interacting beam segments and on generalized measures of their relative motion, based on the pure deformation modes of the beam. Attenuation functions governing the space decay of the non-local effects are introduced. Numerical resul…
Fractional viscoelastic transversally isotropic Timoshenko beam
2014
In this paper the viscoelastic behavior of pultruded beams has been examined. Pultruded beams are constituted by a polymer infilled with reinforcement in longitudinal direction, while in the orthogonal direction no fiber are present for technological reasons. As a consequence the material has two different behaviors in longitudinal and in orthogonal directions. It follows that pultruded beams are transversally isotropic, and the shear deformation may not be neglected. Based upon the previous observations and assuming for Creep and/or Relaxation test the power law, the constitutive equations are ruled by fractional operators. From constitutive laws, and assuming the Timoshenko beam theory to…
A smart composite-piezoelectric one-dimensional finite element model for vibration damping analysis
2015
A one-dimensional finite element method for generally layered smart beams is presented in this paper. The model implements the first-order shear deformation beam theory and is based on the preliminary analytical condensation of the electric state to the mechanical state. This allows us to establish an effective mechanical beam kinematically equivalent to the original smart beam including the effects of electro-elastic couplings. The contributions of the external electric loads are included in both the equivalent stiffness properties and the equivalent mechanical boundary conditions. Hermite shape functions, which depend on parameters representative of the staking sequence through the equiv…
Hamiltonian structural analysis of curved beams with or without generalized two-parameter foundation
2013
The solution of curved Timoshenko beams with or without generalized two-parameter elastic foundation is presented. Beam can be subjected to any kind of loads and imposed external actions, distributed or concentrated along the beam. It can have external and internal restraints and any kind of internal kinematical or mechanical discontinuity. Moreover, the beam may have any spatial curved geometry, by dividing the entire structure into segments of constant curvature and constant elastic properties, each segment resting or not on elastic foundation. The foundation has six parameters like a generalized Winkler soil with the addition of other two parameters involving the link between settlements…
Unified theory for analysis of curved thin-walled girders with open and closed cross section through HSA method
2016
Abstract The behaviour of thin-walled structures is deeply influenced by non-uniform torsion and cross section distortion. In this paper the extension of the Hamiltonian Structural Analysis (HSA) Method to thin-walled straight and curved beams is presented. The proposed method solves the structural elastic problem of thin-walled beams through the definition of a Hamiltonian system composed of 1st order differential equations. The method allows engineers to solve the elastic problem by introducing the degrees of freedom and the corresponding compatibility equations, founding equilibrium equations in the variational form. The methodology is explained in the framework of the so-called Generali…
Finite element method for a nonlocal Timoshenko beam model
2014
A finite element method is presented for a nonlocal Timoshenko beam model recently proposed by the authors. The model relies on the key idea that nonlocal effects consist of long-range volume forces and moments exchanged by non-adjacent beam segments, which contribute to the equilibrium of a beam segment along with the classical local stress resultants. The long-range volume forces/moments are linearly depending on the product of the volumes of the interacting beam segments, and their relative motion measured in terms of the pure beam deformation modes, through appropriate attenuation functions governing the spatial decay of nonlocal effects. In this paper, the beam model is reformulated wi…
Variational formulations and extra boundary conditions within stress gradient elasticity theory with extensions to beam and plate models
2016
Abstract The principle of minimum total potential energy and the primary principle of virtual power for stress gradient elasticity are presented as kinematic type constructs dual of analogous static type principles from the literature (Polizzotto, 2014; Polizzotto, 2015a). The extra gradient-induced boundary conditions are formulated as “boundary congruence conditions” on the microstructure’s deformation relative to the continuum, which ultimately require that the normal derivative of the stresses must vanish at the boundary surface. Two forms of the governing PDEs for the relevant boundary-value problem are presented and their computational aspects are discussed. The Timoshenko beam and th…
On the vibrations of a mechanically based non-local beam model
2012
The vibration problem of a Timoshenko non-local beam is addressed. The beam model involves assuming that the equilibrium of each volume element is attained due to contact forces and long-range body forces exerted, respectively, by adjacent and non-adjacent volume elements. The contact forces result in the classical Cauchy stress tensor while the long-range forces are taken as depending on the product of the interacting volume elements and on their relative displacement through a material-dependent distance-decaying function. To derive the motion equations and the related mechanical boundary conditions, the Hamilton's principle is applied The vibration problem of a Timoshenko non-local beam …